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Communicated by V. Vento

Abstract. On the basis of the phenomenological relativistic harmonic model for quarks, we have obtained
the ground-state masses of the light pseudo-scalar and vector mesons. The full Hamiltonian used in the
investigation has Lorentz scalar + vector confinement potential, along with one-gluon-exchange potential
(OGEP) and the instanton-induced quark-antiquark interaction. A good agreement is obtained with the
experimental masses. The respective role of instanton-induced interaction and OGEP for the determination
of the meson masses is discussed.

PACS. 12.39.Ki Relativistic quark model – 12.39.Pn Potential models – 14.40.Aq π, K, and η mesons

1 Introduction

Non-relativistic quark models (NRQM) have proved very
successful in describing hadronic properties [1–7]. The
Hamiltonian of these quark models usually contains three
main ingredients: the kinetic energy, the confinement po-
tential and a hyperfine-interaction term, which has often
been taken as an effective one-gluon-exchange potential
(OGEP) [8]. Other types of hyperfine interaction have
been introduced in the literature; from the non-relativistic
reduction of the t’Hooft interaction [9,10], one can derive
an Instanton-Induced Interaction (III), which has already
been successfully applied in several studies of the hadron
spectra [7,11–15]. The main achievement of the III
in hadron spectroscopy is the resolution of the UA(1)
problem, which leads to a good prediction of the masses
of η and η′ mesons. The Goldstone-Boson-Exchange
interaction introduced by Glozman and Riska [16] fur-
nishes another example of hyperfine interaction; it allows
a good description of the baryon spectrum, and gives
in particular a correct ordering for the positive- and
negative-parity states. The model of Glozman and Riska
has however the major caveat to apply only to baryons
and is thus not able to give a unified description of the
spectrum of hadrons. There are other models, which,
like the III, include an isospin-dependent interaction:
the algebraic model [17] or the hypercentral constituent
quark model [18], for example.
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The successes of the NRQM in describing the spec-
trum of light hadrons are somehow paradoxical, as light
quarks should in principle not obey a non-relativistic dy-
namics. This paradox has been avoided in many works
based on the constituent quark model by using for the ki-
netic energy term of the Hamiltonian a semi-relativistic
or relativistic expression (see, for example, [13,19,20]). In
our present work, we have made use of the relativistic
harmonic model (RHM) [21]. The RHM combined with
OGEP has already been used to calculate light hadrons
masses, baryons magnetic moments, leptonic decay widths
and N-N scattering phase shifts [22–24]. The full Hamil-
tonian used in our investigation has Lorentz scalar + vec-
tor confinement potential along with OGEP and III. Note
that we have neglected the Lorentz structure of OGEP
and III. There are terms, in the Fermi-Breit interaction,
which are momentum-dependent but they are generally
small [25].

In the present work, we have computed the masses
of the light pseudoscalar and vector mesons by including
the instanton-induced interaction as a short-range non-
perturbative gluon effect in addition to the pertubative
conventional OGEP derived from QCD. If OGEP is taken
as the only source of hyperfine interaction, the value of the
strong-coupling constant (αs) necessary to reproduce the
hadrons spectrum is generally much larger than one; this
leads to a large spin-orbit interaction, which destroys the
overall fit of the spectrum. We think, nevertheless, that it
would be exaggerated to eliminate OGEP completely for
light quarks. The inclusion of III will diminish the rela-
tive importance of OGE for the hyperfine splittings. One



248 The European Physical Journal A

of the aims of this study is to determine explicitly the role
played by instantons in meson spectra, when used in the
framework of the RHM and to compare the effects of III
to the ones of OGE.

The total energy or the mass of the meson is obtained
by calculating the energy eigenvalues of the Hamiltonian
in the harmonic-oscillator basis spanned over a space ex-
tending up to the radial quantum number nMAX = 5. The
masses of the ground-state mesons are obtained after di-
agonalization for various values of nMAX.

In the next section, we review briefly the relativistic
harmonic model and describe the OGE and III terms of
our Hamiltonian. We also discuss the parameters involved
in our model. The results of the calculations are presented
in sect. 3. Some conclusions are given in sect. 4.

2 The relativistic harmonic model

In the RHM, quarks in a hadron are confined through the
action of a Lorentz scalar plus a vector harmonic-oscillator
potential

Vconf(r) =
1
2
(1 + γ0) A2r2 +M , (1)

where γ0 is the Dirac matrix:

γ0 =
(
1 0
0 −1

)
, (2)

M is the quark mass parameter and A2 the confine-
ment strength. They have a different value for each quark
flavour. In the RHM, the confined single quark wave func-
tion (Ψ) is given by

Ψ = N

(
Φ

σ·P
E+M Φ

)
(3)

with the normalization

N =

√
2(E +M)
3E +M

; (4)

E is an eigenvalue of the single-particle Dirac equation
with the interaction potential given by (1). We perform
a similarity transformation to eliminate the lower compo-
nent of Ψ such that

U Ψ = Φ , (5)

where U is given by

1

N
[
1 + P 2

(E+M)2

]
(

1 σ·P
E+M

− σ·P
E+M 1

)
. (6)

Here U is a momentum and state (E) dependent trans-
formation operator. With this transformation, the upper
component Φ satisfies the equation[

P 2

E +M
+A2r2

]
Φ = (E − M) Φ , (7)

which is like the three-dimensional harmonic-oscillator
equation with an energy-dependent parameter Ω2

n:

Ω2
n = A (En +M)

1
2 . (8)

The eigenvalue of (7) is thus given by

E2
n = M2 + (2n+ 1) Ω2

n . (9)

Note that eq. (7) can also be derived by eliminating the
lower component of the wave function, using a Foldy-
Wouthuysen transformation, as has been done in [21].

The total energy of the hadron is obtained by adding
the individual contributions of the quarks. The spurious
centre of mass (CM) is corrected [26] by using intrinsic
operators for the

∑
i r2

i and
∑

i ∇2
i terms appearing in

the Hamiltonian. This amounts to just subtracting the
CM motion zero contribution from the E2 expression. It
should be noted that this method is exact for the 0S state
quarks as the CM motion is also in the 0S state.

We come now to the description of the quark-antiquark
potential; it is given by the sum of a one-gluon-exchange
and of an instanton-induced interaction potential:

Vq(rij ) = VOGEP(rij) + VIII(rij), (10)

with rij the inter-quark distance.
Among the several versions of the one-gluon-exchange

potential VOGEP, we have used the following one, first
derived in [8] from the QCD Lagrangian in the non-
relativistic limit and used subsequently by many authors
(for example, [27,28]):

VOGEP(rij) =
αs

4
λi · λj

×
[
1
rij

− π

MiMj
(1 +

2
3

σi · σj) δ(rij)
]

, (11)

where the first term is the residual Coulomb energy and
the second term the chromo-magnetic interaction leading
to the hyperfine splittings.

To model the instanton-induced interaction, we have
used the form given in [7,13]:

VIII(rij) =




−8 g δ(rij) δS,0 δL,0 , for I = 1 ,

−8 g′ δ(rij) δS,0 δL,0 , for I = 1/2 ,

8
(

g
√
2g′√

2g′ 0

)
δ(rij)δS,0δL,0 , for I = 0 .

(12)
In the above expression, S, L, I are, respectively, the spin,
the relative orbital angular momentum and the isospin of
the system. g and g′ are dimensioned coupling constants.
As in refs. [7,13], the Dirac delta-function appearing
in (12) is regularized and replaced by a Gaussian-like
function:

δ(rij)→ 1
(Λ

√
π)3

exp

[
−r2

ij

Λ2

]
. (13)

The parameters of the RHM are the masses of the
quarks, Mu = Md and Ms, the respective confinement
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Table 1. Values of the parameters used in our model.

b 0.77 fm

Mu,d 160.6 MeV

Ms 402.5 MeV

A2
u/d 3693.0 MeV fm−2

A2
s 2934.9 MeV fm−2

αs 0.2

Λ 0.35 fm

g 0.1348 × 10−4 MeV−2

g′ 0.0954 × 10−4 MeV−2

strengths, A2
u = A2

d, A
2
s, and the oscillator size parameter

b (= 1/Ω). They are chosen to reproduce various nucleon’s
properties: the root mean-square charge radius, the mag-
netic moment and the ratio of the axial coupling to the
vector coupling. The confinement strength Au,d is fixed
by the stability condition for the nucleon mass against
the variation of the size parameter b,

∂

∂b
〈N |H|N〉 = 0. (14)

The parameters associated to the strange quark Ms and
A2

s have been fitted in order to reproduce the magnetic
moments of the strange baryons, according to the proce-
dure described in [29].

We need also to fit the four parameters of the quark-
antiquark interaction. The parameters of III, g, g′ and Λ,
the strength and the range of the interaction of III, were
fitted to the experimental masses of π and K mesons. The
coupling constant αs of OGEP is fitted on the mass of the
ρ meson, as III does not contribute to vector mesons. The
values of the parameters used in our calculations are listed
in table 1. One can notice that our value of αs (0.2) is much
smaller than one.

3 Results and discussion

In our present study of meson spectroscopy, the product
of the quark-antiquark oscillator wave functions are ex-
pressed in terms of oscillator wave functions correspond-
ing to the relative and CM coordinates using the Moshin-
sky transformations [30]. We have restricted the CM wave
functions to the 0S state. The total energy or the mass
of the meson is obtained by calculating the energy eigen-
value of the Hamiltonian in the harmonic-oscillator basis
spanned over a space extending up to the radial quantum
number nMAX = 5.

The masses of the pseudo-scalar and vector mesons
after diagonalization for successive values of nMAX are
listed in table 2 and table 3, respectively. Table 4 shows
the respective diagonal contributions of the III and of the
chromo-electric and chromo-magnetic part of OGE to the
0S state of each of the mesons.

We get a very good agreement with the experimental
masses [31] of the ground-state pseudo-scalar and vector

Table 2. Pseudo-scalar meson masses (in MeV) for successive
values of nMAX.

nMAX π K η η′

0 433.22 685.26 663.70 1388.52
1 280.56 583.34 600.21 1009.92
2 156.78 503.48 555.45 985.87
3 142.25 494.37 550.71 967.59
4 139.65 492.77 549.95 964.41

Expt. 138.04 495.01 547.3 957.78

Table 3. Vector meson masses (in MeV) for successive values
of nMAX.

nMAX ρ ω K∗ φ

0 771.98 779.84 891.82 1023.06
1 771.77 778.92 891.02 1021.05
2 771.74 778.39 890.75 1020.41
3 771.73 778.36 890.72 1020.37
4 771.72 778.19 890.72 1020.36

Expt. 769.3 783 893.14 1019.417

Table 4. Diagonal contributions of the III and of the chromo-
electric and chromo-magnetic part of OGE to the 0S state.

Meson III (MeV) Colour-electric Colour-magnetic
OGEP (MeV) OGEP (MeV)

π −245.97 −42.41 −69.43
K −174.07 −63.27 −27.70
η −183.96 23.83 −23.16
η′ 658.30 −90.30 −103.88
ρ −42.41 23.14
ω −39.84 26.83
φ −71.58 13.69

K∗ −63.27 9.23

mesons. Both OGEP and III are attractive inside π, the
diagonalization in the space of radially excited pion states
brings down the value of π to the physical mass. For ex-
ample, with nMAX = 0, the naive masses of the π and K
mesons turned out to be 433 and 685 MeV, respectively.
For vector mesons, one can see from table 3 that there is
no change in the masses for increasing nMAX as OGEP
is repulsive and hence perturbative techniques are fully
adequate and justified. We have also calculated that the
colour-electric term of OGEP contributes significantly to
the masses.

Without III, the naive mass of the pion turns out to
be 712 MeV. The contribution of III is thus essential for
reducing the masses of pseudo-scalar mesons. If one uses
only OGEP, one needs to choose αs = 1.9 in order to
reproduce the physical mass of the pion. But this value of
αs leads to much too large masses for the vector mesons.
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4 Conclusions

In this work, we have investigated the effect of the
Instanton-Induced Interaction on the ground-state masses
of light mesons in the framework of the Relativistic Har-
monic Model. We have shown that the computation of
mesonic masses/mass splittings using OGEP only is inade-
quate for pseudo-scalar and vector mesons. There is a sub-
stantial attractive contribution from III to pseudo-scalar
mesons. The same force is responsible for the difference in
the mass between η-η′ mesons. A consistent description of
the π-ρ splitting, the η-η′ mixing and the K-K∗ splitting
is obtained. To obtain the vector meson masses, OGEP
is sufficient. Hence, it is justified to use a combination of
OGE (with a relatively small strength) and III potentials
for pseudo-scalar mesons. In our work, CM corrections
have been included exactly. For attractive OGEP and III
within pseudo-scalar mesons, the contribution from the
off-diagonal elements is found to be significant. The diag-
onalization of the interaction matrix in the RHM states
leads to a lowering of the masses for the pseudo-scalar
particles, so as to agree with the experimental masses. Of
course, this work is only exploratory as only the ground-
state mesons have been studied. The goal was to combine
the advantages of the relativistic approach of the RHM
with the instanton-induced interaction. This work could
be extended by including some tensor and spin-orbit forces
in our model. Moreover, it may be also a starting point
for further investigation in baryon spectroscopy. Work in
this direction is in progress.
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for supporting the project. The work is supported by DAE
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